Copper (0) Mediated Single Electron Transfer-Living Radical Polymerization of Methyl Methacrylate: Functionalized Graphene as a Convenient Tool for Radical Initiator

铜(0)介导的单电子转移-甲基丙烯酸甲酯的活性自由基聚合:功能化石墨烯作为自由基引发剂的便捷工具

阅读:10
作者:Adhigan Murali, Srinivasan Sampath, Boopathi Appukutti Achuthan, Mohan Sakar, Suryanarayanan Chandrasekaran, N Suthanthira Vanitha, R Joseph Bensingh, M Abdul Kader, Sellamuthu N Jaisankar

Abstract

Polymer nanocomposites have been synthesized by the covalent addition of bromide-functionalized graphene (Graphene-Br) through the single electron transfer-living radical polymerization technique (SET-LRP). Graphite functionalized with bromide for the first time via an efficient route using mild reagents has been designed to develop a graphene based radical initiator. The efficiency of sacrificial initiator (ethyl α-bromoisobutyrate) has also been compared with a graphene based initiator towards monitoring their Cu(0) mediated controlled molecular weight and morphological structures through mass spectroscopy (MOLDI-TOF) and field emission scanning electron microscopy (FE-SEM) analysis, respectively. The enhancement in thermal stability is observed for graphene-grafted-poly(methyl methacrylate) (G-g-PMMA) at 392 °C, which may be due to the influence ofthe covalent addition of graphene, whereas the sacrificial initiator used to synthesize G-graft-PMMA (S) has low thermal stability as analyzed by TGA. A significant difference is noticed on their glass transition and melting temperatures by DSC. The controlled formation and structural features of the polymer-functionalized-graphene is characterized by Raman, FT-IR, UV-Vis spectroscopy, NMR, and zeta potential measurements. The wettability measurements of the novel G-graft-PMMA on leather surface were found to be better in hydrophobic nature with a water contact angle of 109 ± 1°.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。