A Protein-Based Genetic Screening Uncovers Mutants Involved in Phytochrome Signaling in Arabidopsis

基于蛋白质的基因筛选揭示拟南芥中参与光敏色素信号传导的突变体

阅读:9
作者:Ling Zhu, Ruijiao Xin, Enamul Huq

Abstract

Plants perceive red and far-red region of the light spectrum to regulate photomorphogenesis through a family of photoreceptors called phytochromes. Phytochromes transduce the light signals to trigger a cascade of downstream gene regulation in part via a subfamily of bHLH transcription factors called Phytochrome Interacting Factors (PIFs). As the repressors of light signaling pathways, most PIFs are phosphorylated and degraded through the ubiquitin/26S proteasome pathway in response to light. The mechanisms involved in the phosphorylation and degradation of PIFs have not been fully understood yet. Here we used an EMS mutagenesis and luminescent imaging system to identify mutants defective in the degradation of one of the PIFs, called PIF1. We identified five mutants named stable PIF (spf) that showed reduced degradation of PIF1 under light treatment in both luminescent imaging and immunoblot assays. The amounts of PIF1 in spf3, spf4, and spf5 were similar to a PIF1 missense mutant (PIF1-3M) that lacks interactions between PIF1 and phyA/phyB under light. The hypocotyl lengths of spf1 and spf2 were slightly longer under red light compared to the LUC-PIF1 control, while only spf1 displayed weak phenotype under far-red light conditions. Interestingly, the spf3, spf4, and spf5 displayed high abundance of PIF1, yet the hypocotyl lengths were similar to the wild type under these conditions. Cloning and characterization of these mutants will help identify key players in the light signaling pathways including, the light-regulated kinase(s) and the E3 ligase(s) necessary for the light-induced degradation of PIFs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。