Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement

NELL1 基因过表达对植入磷酸钙水泥的 iPSC-MSC 的影响

阅读:5
作者:Jun Liu, Wenchuan Chen, Zhihe Zhao, Hockin H K Xu

Abstract

Human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a promising source of patient-specific stem cells with great regenerative potential. There has been no report on NEL-like protein 1 (NELL1) gene modification of iPSC-MSCs. The objectives of this study were to genetically modify iPSC-MSCs with NELL1 overexpression for bone tissue engineering, and investigate the osteogenic differentiation of NELL1 gene-modified iPSC-MSCs seeded on Arg-Gly-Asp (RGD)-grafted calcium phosphate cement (CPC) scaffold. Cells were transduced with red fluorescence protein (RFP-iPSC-MSCs) or NELL1 (NELL1-iPSC-MSCs) by a lentiviral vector. Cell proliferation on RGD-grafted CPC scaffold, osteogenic differentiation and bone mineral synthesis were evaluated. RFP-iPSC-MSCs stably expressed high levels of RFP. Both the NELL1 gene and NELL1 protein levels were confirmed higher in NELL1-iPSC-MSCs than in RFP-iPSC-MSCs using RT-PCR and Western blot (P<0.05). Alkaline phosphatase activity was increased by 130% by NELL1 overexpression at 14days (P<0.05), indicating that NELL1 promoted iPSC-MSC osteogenic differentiation. When seeded on RGD-grafted CPC, NELL1-iPSC-MSCs attached and expanded similarly well to RFP-iPSC-MSCs. At 14days, the runt-related transcription factor 2 (RUNX2) gene level of NELL1-iPSC-MSCs was 2.0-fold that of RFP-iPSC-MSCs. The osteocalcin (OC) level of NELL1-iPSC-MSCs was 3.1-fold that of RFP-iPSC-MSCs (P<0.05). The collagen type I alpha 1 (COL1A1) gene level of NELL1-iPSC-MSCs was 1.7-fold that of RFP-iPSC-MSCs at 7days (P<0.05). Mineral synthesis was increased by 81% in NELL1-iPSC-MSCs at 21days. In conclusion, NELL1 overexpression greatly enhanced the osteogenic differentiation and mineral synthesis of iPSC-MSCs on RGD-grafted CPC scaffold for the first time. The novel NELL1-iPSC-MSC seeded RGD-CPC construct is promising for enhancing bone engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。