Suppression of renal crystal formation, inflammation, and fibrosis by blocking oncostatin M receptor β signaling

通过阻断抑癌素 M 受体 β 信号传导来抑制肾脏晶体形成、炎症和纤维化

阅读:8
作者:Ryusuke Deguchi #, Tadasuke Komori #, Shimpei Yamashita, Tomoko Hisaoka, Mizuki Kajimoto, Yasuo Kohjimoto, Isao Hara, Yoshihiro Morikawa

Abstract

Oncostatin M (OSM) has pleiotropic effects on various inflammatory diseases, including kidney stone disease. The prevalence of kidney stones has increased worldwide, despite recent therapeutic advances, due to its high recurrence rate, suggesting the importance of prevention of repeated recurrence in the treatment of kidney stone disease. Using a mouse model of renal crystal formation, we investigated the preventive effects of blockade of OSM receptor β (OSMRβ) signaling on the development of kidney stone disease by treatment with a monoclonal anti-OSMRβ antibody that we generated. The anti-OSMRβ antibody abrogated OSM-induced phosphorylation of STAT3 and expression of crystal-binding molecules (Opn, Anxa1, Anxa2) and inflammation/fibrosis-associated molecules (Tnfa, Tgfb, Col1a2) in renal tubular epithelial cells and fibroblasts. In glyoxylate-injected mice, a mouse model of renal crystal formation, there was significant suppression of crystal deposits and expression of crystal-binding molecules (Opn, Anxa1, Anxa2), a tubular injury marker (Kim-1), and inflammation/fibrosis-associated molecules (Tnfa, Il1b, Mcp-1, Tgfb, Col1a2) in the kidneys of the anti-OSMRβ antibody-treated mice, compared with those in vehicle- or isotype control antibody-treated mice. In addition, treatment with the anti-OSMRβ antibody significantly decreased infiltrating macrophages and fibrosis in the kidneys. These findings suggest that anti-OSMRβ antibody-treatment may be effective in preventing kidney stone disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。