Study of the mechanism by gentiopicroside protects against skin fibroblast glycation damage via the RAGE pathway

龙胆苦苷通过RAGE通路防治皮肤成纤维细胞糖化损伤的机制研究

阅读:4
作者:Chunyu Chen, Xiaoxing Liu, Li Li, Miaomiao Guo, Yifan He, Yinmao Dong, Hong Meng, Fan Yi

Abstract

The occurrence of nonenzymatic glycosylation reactions in skin fibroblasts can lead to severe impairment of skin health. To investigate the protective effects of the major functional ingredient from Gentianaceae, gentiopicroside (GPS) on fibroblasts, network pharmacology was used to analyse the potential pathways and targets underlying the effects of GPS on skin. At the biochemical and cellular levels, we examined the inhibitory effect of GPS on AGEs, the regulation by GPS of key ECM proteins and vimentin, the damage caused by GPS to the mitochondrial membrane potential and the modulation by GPS of inflammatory factors such as matrix metalloproteinases (MMP-2, MMP-9), reactive oxygen species (ROS), and IL-6 via the RAGE/NF-κB pathway. The results showed that GPS can inhibit AGE-induced damage to the dermis via multiple pathways. The results of biochemical and cellular experiments showed that GPS can strongly inhibit AGE production. Conversely, GPS can block AGE-induced oxidative stress and inflammatory responses in skin cells by disrupting AGE-RAGE signalling, maintain the balance of ECM synthesis and catabolism, and alleviate AGE-induced dysfunctions in cellular behaviour. This study provides a theoretical basis for the use of GPS as an AGE inhibitor to improve skin health and alleviate the damage caused by glycosylation, showing its potential application value in the field of skin care.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。