Bexarotene blocks calcium-permeable ion channels formed by neurotoxic Alzheimer's β-amyloid peptides

贝沙罗汀阻断由神经毒性阿尔茨海默氏症 β-淀粉样肽形成的钙通透性离子通道

阅读:8
作者:Jacques Fantini, Coralie Di Scala, Nouara Yahi, Jean-Denis Troadec, Kevin Sadelli, Henri Chahinian, Nicolas Garmy

Abstract

The anticancer drug bexarotene has been shown to restore cognitive functions in animal models of Alzheimer's disease, but its exact mechanism of action remains elusive. In the present report, we have used a combination of molecular, physicochemical, and cellular approaches to elucidate the mechanisms underlying the anti-Alzheimer properties of bexarotene in neural cells. First of all, we noticed that bexarotene shares a structural analogy with cholesterol. We showed that cholesterol and bexarotene compete for the same binding site in the C-terminal region of Alzheimer's β-amyloid peptide 1-42 (Aβ1-42). This common bexarotene/cholesterol binding domain was characterized as a linear motif encompassing amino acid residues 25-35 of Aβ1-42. Because cholesterol is involved in the oligomerization of Alzheimer's β-amyloid peptides into neurotoxic amyloid channels, we studied the capability of bexarotene to interfere with this process. We showed that nanomolar concentrations of bexarotene efficiently prevented the cholesterol-dependent increase of calcium fluxes induced by β-amyloid peptides Aβ1-42 and Aβ25-35 in SH-SY5Y cells, suggesting a direct effect of the drug on amyloid channel formation. Molecular dynamics simulations gave structural insights into the role of cholesterol in amyloid channel formation and explained the inhibitory effect of bexarotene. Because it is the first drug that can both inhibit the binding of cholesterol to β-amyloid peptides and prevent calcium-permeable amyloid pore formation in the plasma membrane of neural cells, bexarotene might be considered as the prototype of a new class of anti-Alzheimer compounds. The experimental approach developed herein can be used as a screening strategy to identify such compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。