Reciprocal Roles of Tom7 and OMA1 during Mitochondrial Import and Activation of PINK1

Tom7 和 OMA1 在线粒体导入和 PINK1 激活过程中的相互作用

阅读:5
作者:Shiori Sekine, Chunxin Wang, Dionisia P Sideris, Eric Bunker, Zhe Zhang, Richard J Youle

Abstract

Mutations in PTEN-induced kinase 1 (PINK1) can cause recessive early-onset Parkinson's disease (PD). Import arrest results in PINK1 kinase activation specifically on damaged mitochondria, triggering Parkin-mediated mitophagy. Here, we show that PINK1 import is less dependent on Tim23 than on mitochondrial membrane potential (ΔΨm). We identified a negatively charged amino acid cluster motif that is evolutionarily conserved just C-terminal to the PINK1 transmembrane. PINK1 that fails to accumulate at the outer mitochondrial membrane, either by mutagenesis of this negatively charged motif or by deletion of Tom7, is imported into depolarized mitochondria and cleaved by the OMA1 protease. Some PD patient mutations also are defective in import arrest and are rescued by the suppression of OMA1, providing a new potential druggable target for PD. These results suggest that ΔΨm loss-dependent PINK1 import arrest does not result solely from Tim23 inactivation but also through an actively regulated "tug of war" between Tom7 and OMA1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。