Inducible nitric oxide synthase provides protection against injury-induced thrombosis in female mice

诱导型一氧化氮合酶可保护雌性小鼠免受损伤引起的血栓形成

阅读:6
作者:Rita K Upmacis, Hao Shen, Lea Esther S Benguigui, Brian D Lamon, Ruba S Deeb, Katherine A Hajjar, David P Hajjar

Abstract

Nitric oxide (NO) is an important vasoactive molecule produced by three NO synthase (NOS) enzymes: neuronal (nNOS), inducible (iNOS), and endothelial NOS (eNOS). While eNOS contributes to blood vessel dilation that protects against the development of hypertension, iNOS has been primarily implicated as a disease-promoting isoform during atherogenesis. Despite this, iNOS may play a physiological role via the modulation of cyclooxygenase and thromboregulatory eicosanoid production. Herein, we examined the role of iNOS in a murine model of thrombosis. Blood flow was measured in carotid arteries of male and female wild-type (WT) and iNOS-deficient mice following ferric chloride-induced thrombosis. Female WT mice were more resistant to thrombotic occlusion than male counterparts but became more susceptible upon iNOS deletion. In contrast, male mice (with and without iNOS deletion) were equally susceptible to thrombosis. Deletion of iNOS was not associated with a change in the balance of thromboxane A(2) (TxA(2)) or antithrombotic prostacyclin (PGI(2)). Compared with male counterparts, female WT mice exhibited increased urinary nitrite and nitrate levels and enhanced ex vivo induction of iNOS in hearts and aortas. Our findings suggest that iNOS-derived NO in female WT mice may attenuate the effects of vascular injury. Thus, although iNOS is detrimental during atherogenesis, physiological iNOS levels may contribute to providing protection against thrombotic occlusion, a phenomenon that may be enhanced in female mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。