Spatiotemporal control of l-phenyl-alanine crystallization in microemulsion: the role of water in mediating molecular self-assembly

微乳液中苯丙氨酸结晶的时空控制:水在介导分子自组装中的作用

阅读:6
作者:Qi Liu, Jingkang Wang, Xin Huang, Hao Wu, Shuyi Zong, Xiaowei Cheng, Hongxun Hao

Abstract

Water confined or constrained in a cellular environment can exhibit a diverse structural and dynamical role and hence will affect the self-assembly behavior of biomolecules. Herein, the role of water in the formation of l-phenyl-alanine crystals and amyloid fibrils was investigated. A microemulsion biomimetic system with controllable water pool size was employed to provide a microenvironment with different types of water, which was characterized by small-angle X-ray scattering, attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry. In a bound water environment, only plate-like l-phenyl-alanine crystals and their aggregates were formed, all of which are anhydrous crystal form I. However, when free water dominated, amyloid fibrils were observed. Free water not only stabilizes new oligomers in the initial nucleation stage but also forms bridged hydrogen bonds to induce vertical stacking to form a fibrous structure. The conformational changes of l-phenyl-alanine in different environments were detected by NMR. Different types of water trigger different nucleation and growth pathways, providing a new perspective for understanding molecular self-assembly in nanoconfinement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。