Using ZnCo2O4 nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells

使用 ZnCo2O4 纳米粒子作为空穴传输层来提高钙钛矿太阳能电池的长期稳定性

阅读:8
作者:Bo-Rong Jheng, Pei-Ting Chiu, Sheng-Hsiung Yang, Yung-Liang Tong

Abstract

Inorganic metal oxides with the merits of high carrier transport capability, low cost and superior chemical stability have largely served as the hole transport layer (HTL) in perovskite solar cells (PSCs) in recent years. Among them, ternary metal oxides have gradually attracted attention because of the wide tenability of the two inequivalent cations in the lattice sites that offer interesting physicochemical properties. In this work, ZnCo2O4 nanoparticles (NPs) were prepared by a chemical precipitation method and served as the HTL in inverted PSCs. The device based on the ZnCo2O4 NPs HTL showed better efficiency of 12.31% and negligible hysteresis compared with the one using PEDOT:PSS film as the HTL. Moreover, the device sustained 85% of its initial efficiency after 240 h storage under a halogen lamps matrix exposure with an illumination intensity of 1000 W/m2, providing a powerful strategy to design long term stable PSCs for future production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。