Diquafosol ophthalmic solution enhances mucin expression via ERK activation in human conjunctival epithelial cells with hyperosmotic stress

地夸磷索滴眼液通过激活 ERK 增强高渗应激人结膜上皮细胞中的粘蛋白表达

阅读:10
作者:Hyun Jung Lee, Soonwon Yang, Eun Jeong Cheon, Soojung Shin, Yong-Soo Byun, Hyun Seung Kim, So-Hyang Chung

Conclusions

ERK signaling may regulate the expression levels of MUC1, MUC16, and MUC5AC induced by diquafosol in hyperosmotic stressed HCECs.

Methods

HCECs were treated with hyperosmotic stress (400 mOsm/l) for 24 h after air-liquid interface cell culture followed by treatment with diquafosol. HCECs were stimulated for 1 h with or without PD98059, an ERK inhibitor, then treated with diquafosol for 6 h and 24 h. Mucin 1 (MUC1), mucin 16 (MUC16), and MUC5AC mRNA and protein expression levels were analyzed, and cell viability was detected using an MTT assay. Western blot analysis was used to examine p44/42 MAPK (Erk1/2) and phosphorylated p44/42 MAPK (Erk1/2) expression.

Purpose

To evaluate the effect of diquafosol tetrasodium on the expression of secretory and membrane-associated mucins in multi-layered cultures of primary human conjunctival epithelial cells (HCEC) using intracellular extracellular signal regulated kinase (ERK) signaling.

Results

Hyperosmotic stressed HCECs demonstrated increased MUC5AC secretion and gene expression when treated with diquafosol. MUC1 mRNA levels increased significantly at 24 h (p<0.01), and expression of MUC16 mRNA levels increased at 6 h and were maintained until 24 h (p<0.05).There was no significant difference in cell viability compared to the control group. Immunostaining results for MUC1, MUC16, and MUC5AC in diquafosol tetrasodium-treated HCECs at 24 h showed more positive cells than in the control group. Phosphorylation of p44/42 MAPK (Erk1/2) signaling molecules significantly increased from 5 min to 60 min (p<0.05). The effects of diquafosol on mucin expressions in hyperosmotic stressed HCECs were significantly inhibited by PD98059, an ERK inhibitor, at 6 h and 24 h. Conclusions: ERK signaling may regulate the expression levels of MUC1, MUC16, and MUC5AC induced by diquafosol in hyperosmotic stressed HCECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。