Evaluating Antigen- and Vector-Specific Immune Responses of a Recombinant Pichinde Virus-Based Vaccine Expressing the Lymphocytic Choriomeningitis Virus Nucleoprotein

评估表达淋巴细胞脉络丛脑膜炎病毒核蛋白的重组皮钦德病毒疫苗的抗原和载体特异性免疫反应

阅读:6
作者:Michaela Cain, Qinfeng Huang, Shania Sanchez, Hinh Ly, Yuying Liang

Background

Live viral vector-based vaccines are known to elicit strong immune responses, but their use can be limited by anti-vector immunity. Here, we analyzed the immunological responses of a live-attenuated recombinant Pichinde virus (PICV) vector platform (rP18tri).

Conclusion

These findings provide important insights into the antigen- and vector-specific immunity of the rP18tri-NPLCMV vaccine and support the development of NP-based vaccines against arenavirus pathogens.

Methods

To evaluate anti-PICV immunity in the development of vaccine antigen-specific immune responses, we generated a rP18tri-based vaccine expressing the lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP) and administered four doses of this rP18tri-NPLCMV vaccine to mice. Using MHC-I tetramers to detect PICV NP38-45 and LCMV NP396-404 epitope-specific CD8+ T cells, we monitored vector- and vaccine-antigen-specific immune responses after each vaccination dose.

Results

LCMV NP396-404-specific effector and memory CD8+ T cells were detected after the first dose and peaked after the second dose, whereas PICV NP38-45-specific memory CD8+ T cells increased with each dose. PICV-binding IgG antibodies peaked after the second dose, while anti-PICV neutralizing antibodies (NAbs) remained low even after the fourth dose. Immunization with the rP18tri-NPLCMV vaccine significantly reduced LCMV viral titers in a chronic LCMV Clone 13 infection model, demonstrating the protective role of LCMV NP-specific T cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。