In vitro and in vivo evaluation of cerium oxide nanoparticles in respiratory syncytial virus infection

二氧化铈纳米粒子在呼吸道合胞病毒感染中的体外和体内评估

阅读:6
作者:Akhil Patel, Jessica Kosanovich, Sameera Sansare, Sricharani Balmuri, Vinayak Sant, Kerry M Empey, Shilpa Sant

Abstract

Respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis among children worldwide, yet there is no vaccine for RSV disease. This study investigates the potential of cube and sphere-shaped cerium oxide nanoparticles (CNP) to modulate reactive oxygen (ROS) and nitrogen (RNS) species and immune cell phenotypes in the presence of RSV infection in vitro and in vivo. Cube and sphere-shaped CNP were synthesized by hydrothermal and ultrasonication methods, respectively. Physico-chemical characterization confirmed the shape of sphere and cube CNP and effect of various parameters on their particle size distribution and zeta potential. In vitro results revealed that sphere and cube CNP differentially modulated ROS and RNS levels in J774 macrophages. Specifically, cube CNP significantly reduced RSV-induced ROS levels without affecting RNS levels while sphere CNP increased RSV-induced RNS levels with minimal effect on ROS levels. Cube CNP drove an M1 phenotype in RSV-infected macrophages in vitro by increasing macrophage surface expression of CD80 and CD86 with a concomitant increase in TNFα and IL-12p70, while simultaneously decreasing M2 CD206 expression. Intranasal administration of sphere and cube-CNP were well-tolerated with no observed toxicity in BALB/c mice. Notably, cube CNP preferentially accumulated in murine alveolar macrophages and induced their activation, avoiding enhanced uptake and activation of other inflammatory cells such as neutrophils, which are associated with RSV-mediated inflammation. In conclusion, we report that sphere and cube CNP modulate macrophage polarization and innate cellular responses during RSV infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。