Investigation of Diagnostic Biomarkers for Osteoporosis Based on Differentially Expressed Gene Profile with QCT and mDixon-Quant Techniques

使用 QCT 和 mDixon-Quant 技术根据差异表达基因谱研究骨质疏松症诊断生物标志物

阅读:8
作者:Shan Zhu, Aixian Tian, Lin Guo, Hua Xu, Xiaofeng Li, Zhi Wang, Feng He

Conclusion

This study has identified potential gene biomarkers (the genes with most significantly differential expression and useful for distinguishing osteoporosis from other bone disorders) and established a differential expression profile for osteoporosis, which is a valuable reference for future clinical research.

Methods

Using a hindlimb unloading (HLU) rat model to mimic osteoporosis syndrome in humans (animal experiments), the significant differentially expressed mRNAs in osteoporosis were analyzed using RNA-seq. The enriched GO terms as well as KEGG signaling pathways were also deeply investigated. Using clinical specimens to verify the functions of potential hub genes (biomarkers) for osteoporosis (clinical experiments), 128 suspected cases for osteoporosis from January 2019 to December 2020 were randomly selected and analyzed by quantitative computed tomography (QCT) as well as modified Dixon quantification (mDixon-Quant) techniques in the Tianjin hospital. Among these, 80 patients out of 128 suspected cases were finally diagnosed as the osteoporosis group. Meanwhile, 48 patients were selected for osteopenia group. There was no significant age and gender difference across participant subgroups. The protein levels of potential hub genes (FST, CCL3, and RAPGEF4) were determined by ELISA double antibody sandwich method for osteopenia and osteoporosis groups from peripheral blood. Result: In the RNA-seq analysis, compared with control group, a total of 803 differentially expressed mRNAs were identified, including 288 up-regulated and 515 down-regulated mRNAs. Of these, FST, CCL3, CPE, RAPGEF4, IL6, MDFI, PDZD2, and GATM were primary hub genes (biomarkers) for osteoporosis. These differentially expressed genes were significantly enriched in GO terms related to extracellular matrix process and KEGG signaling pathways including osteoclast differentiation. In the functional experiments, the protein expression level of FST, CCL3, and RAPGEF4 displayed a specific expression pattern between osteoporosis patients and control group. The protein concentration of FST was 23.63 ± 6.39 ng/mL in osteoporosis patients compared as 48.36 ± 9.12 ng/mL in osteopenia group (P < 0.01). Meanwhile, CCL3 was 1.03 ± 0.64 ng/mL in osteoporosis patients vs 0.56 ± 0.24 in osteopenia group (P < 0.01) and RAPGEF4 was 53.58 ± 11.42 ng/mL in osteoporosis patients vs 66.47 ± 13.28 ng/mL in osteopenia group (P < 0.05), respectively.

Objective

To develop a comprehensive differential expression profile for osteoporosis based on two independent data sources.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。