A novel strategy for NQO1 (NAD(P)H:quinone oxidoreductase, EC 1.6.99.2) mediated therapy of bladder cancer based on the pharmacological properties of EO9

基于 EO9 药理特性的 NQO1(NAD(P)H:醌氧化还原酶,EC 1.6.99.2)介导膀胱癌治疗新策略

阅读:5
作者:G A Choudry, P A Stewart, J A Double, M R Krul, B Naylor, G M Flannigan, T K Shah, J E Brown, R M Phillips

Abstract

The indolequinone EO9 demonstrated good preclinical activity but failed to show clinical efficacy against a range of tumours following intravenous drug administration. A significant factor in EO9's failure in the clinic has been attributed to its rapid pharmacokinetic elimination resulting in poor drug delivery to tumours. Intravesical administration of EO9 would circumvent the problem of drug delivery to tumours and the principal objective of this study is to determine whether or not bladder tumours have elevated levels of the enzyme NQO1 (NAD(P)H:quinone oxidoreductase) which plays a key role in activating EO9 under aerobic conditions. Elevated NQO1 levels in human bladder tumour tissue exist in a subset of patients as measured by both immunohistochemical and enzymatic assays. In a panel of human tumour cell lines, EO9 is selectively toxic towards NQO1 rich cell lines under aerobic conditions and potency can be enhanced by reducing extracellular pH. These studies suggest that a subset of bladder cancer patients exist whose tumours possess the appropriate biochemical machinery required to activate EO9. Administration of EO9 in an acidic vehicle could be employed to reduce possible systemic toxicity as any drug absorbed into the blood stream would become relatively inactive due to an increase in pH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。