Inhibition of hypoxia-inducible factor 1α accumulation by glyceryl trinitrate and cyclic guanosine monophosphate

硝酸甘油和环磷酸鸟苷抑制缺氧诱导因子1α的积累

阅读:5
作者:Judy Kim, Ivraym B Barsoum, Harrison Loh, Jean-François Paré, D Robert Siemens, Charles H Graham

Abstract

A key mechanism mediating cellular adaptive responses to hypoxia involves the activity of hypoxia-inducible factor 1 (HIF-1), a transcription factor composed of HIF-1α, and HIF-1β subunits. The classical mechanism of regulation of HIF-1 activity involves destabilisation of HIF-1α via oxygen-dependent hydroxylation of proline residues and subsequent proteasomal degradation. Studies from our laboratory revealed that nitric oxide (NO)-mediated activation of cyclic guanosine monophosphate (cGMP) signalling inhibits the acquisition of hypoxia-induced malignant phenotypes in tumour cells. The present study aimed to elucidate a mechanism of HIF-1 regulation involving NO/cGMP signalling. Using human DU145 prostate cancer cells, we assessed the effect of the NO mimetic glyceryl trinitrate (GTN) and the cGMP analogue 8-Bromo-cGMP on hypoxic accumulation of HIF-1α. Concentrations of GTN known to primarily activate the NO/cGMP pathway (100 nM-1 µM) inhibited hypoxia-induced HIF-1α protein accumulation in a time-dependent manner. Incubation with 8-Bromo-cGMP (1 nM-10 µM) also attenuated HIF-1α accumulation, while levels of HIF-1α mRNA remained unaltered by exposure to GTN or 8-Bromo-cGMP. Furthermore, treatment of cells with the calpain (Ca2+-activated proteinase) inhibitor calpastatin attenuated the effects of GTN and 8-Bromo-cGMP on HIF-1α accumulation. However, since calpain activity was not affected by incubation of DU145 cells with various concentrations of GTN or 8-Bromo-cGMP (10 nM or 1 µM) under hypoxic or well-oxygenated conditions, it is unlikely that NO/cGMP signalling inhibits HIF-1α accumulation via regulation of calpain activity. These findings provide evidence for a role of NO/cGMP signalling in the regulation of HIF-1α, and hence HIF-1-mediated hypoxic responses, via a mechanism dependent on calpain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。