Single Impact Injury of Vertebral Endplates Without Structural Disruption, Initiates Disc Degeneration Through Piezo1 Mediated Inflammation and Metabolism Dysfunction

椎骨终板单次撞击损伤未造成结构破坏,通过 Piezo1 介导的炎症和代谢功能障碍引发椎间盘退化

阅读:5
作者:Zhengang Sun, Xinfeng Zheng, Songbo Li, Baozhu Zeng, Jiaming Yang, Zemin Ling, Xizhe Liu, Fuxin Wei

Conclusion

It demonstrated that not only fracture of the endplate but also a single impact injury without structural impairment could also initiate IDD, which might be mediated by activation of Piezo1 induced inflammation and abnormal energy metabolism of IVD cells.Level of Evidence: N/A.

Methods

Rats spinal segments were randomly assigned into Control, Low, and High Impact groups, which were subjected to pure axial impact loading using a custom-made apparatus, and cultured for 14 days. The degenerative process was investigated by using histomorphology, real-time Polymerase Chain Reaction(PCR), western-blot, immunofluorescence, and energy metabolism of IVD cell. The effects of Piezo1 were investigated by using siRNA transfection, real-time PCR, western-blot, and immunofluorescence.

Objective

To establish an axial impact injury model of intervertebral disc (IVD) and to investigate if a single impact injury without endplate structural disruption could initiate intervertebral disc degeneration (IDD), and what is the roles of Piezo1 in this process. Summary of background data: Although IDD process has been confirmed to be associated with structural failures such as endplate fractures, whether a single impact injury of the endplates without structural disruption could initiate IDD remains controversial. Previous studies reported that Piezo1 mediated inflammation participated in the progression of IDD induced by mechanical stretch; however, the roles of Piezo1 in IVD impact injury remain unknown.

Results

The discs in both of the impact groups presented degenerative changes after 14 days, which showed significant up-regulation of Piezo1, NLRP3 inflammasome, the catabolic (MMP-9, MMP-13), and pro-inflammatory gene (IL-1β) expression than that of the control group (P < 0.05), accompanied by significantly increased release of ATP, lactate, nitric oxide (NO), and glucose consumption of IVD cells at first 7 days. Silencing Piezo1 reduced the activation of NLRP3 inflammasome and IL-1β expression in the nucleus pulposus induced by impact injury.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。