A comparison of stem cell-related gene expression in the progenitor-rich limbal epithelium and the differentiating central corneal epithelium

富含祖细胞的角膜缘上皮和分化中的中央角膜上皮中干细胞相关基因表达的比较

阅读:8
作者:Teresa Nieto-Miguel, Margarita Calonge, Ana de la Mata, Marina López-Paniagua, Sara Galindo, María Fideliz de la Paz, Rosa M Corrales

Conclusions

Knowledge of these gene and molecular pathways has provided a better understanding of the signaling molecular pathways associated with progenitor-rich limbal epithelium. This knowledge potentially could give support to the design and development of innovative therapies with the potential to reverse corneal blindness arising from ocular surface failure.

Methods

Real time PCR (rt-PCR) was performed in 24 human limbal and central corneal epithelial samples to evaluate the gene expression profile of known corneal epithelial SC-associated markers. A pool of those samples was further analyzed by a rt-PCR array (RT²-PCR-A) for 84 genes related to the identification, growth, maintenance, and differentiation of SCs.

Purpose

Corneal epithelium is maintained by a population of stem cells (SCs) that have not been identified by specific molecular markers. The objective of this study was to find new putative markers for these SCs and to identify associated molecular pathways.

Results

Cells from the corneal epithelium SC niche showed significant expression of ATP-binding cassette sub-family G member 2 (ABCG2) and cytokeratin (KRT)15, KRT14, and KRT5 genes. RT²-PCR-A results indicated an increased or decreased expression in 21 and 24 genes, respectively, in cells from the corneal SC niche compared to cells from the central corneal epithelium. Functional analysis by proprietary software found 4 different associated pathways and a novel network with the highest upregulated genes in the corneal SC niche. This led to the identification of specific molecules, chemokine (C-X-C motif) ligand 12 (CXCL12), islet-1 transcription factor LIM/homeodomain (ISL1), collagen-type II alpha 1 (COL2A), neural cell adhesion molecule 1 (NCAM1), aggrecan (ACAN), forkhead box A2 (FOXA2), Gap junction protein beta 1/connexin 32 (GJB1/Cnx32), and Msh homeobox 1 (MSX1), that could be used to recognize putative corneal epithelial SCs grown in culture and intended for transplantation. Other molecules, NCAM1 and GJB1/Cnx32, potentially could be used to positively purify them, and Par-6 partitioning defective 6 homolog alpha (PARD6A) to negatively purify them. Conclusions: Knowledge of these gene and molecular pathways has provided a better understanding of the signaling molecular pathways associated with progenitor-rich limbal epithelium. This knowledge potentially could give support to the design and development of innovative therapies with the potential to reverse corneal blindness arising from ocular surface failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。