Ensilication Improves the Thermal Stability of the Tuberculosis Antigen Ag85b and an Sbi-Ag85b Vaccine Conjugate

硅化提高结核抗原 Ag85b 和 Sbi-Ag85b 疫苗结合物的热稳定性

阅读:7
作者:A A Wahid, A Doekhie, A Sartbaeva, J M H van den Elsen

Abstract

There is an urgent need for the development of vaccine thermostabilisation methodologies as the maintenance of a continuous and reliable cold chain remains a major hurdle to the global distribution of safe and effective vaccines. Ensilication, a method that encases proteins in a resistant silica cage has been shown to physically prevent the thermal denaturation of a number of model proteins. In this study we investigate the utility of this promising approach in improving the thermal stability of antigens and vaccine conjugates highly relevant to the development of candidate tuberculosis vaccines, including antigen 85b conjugated with the Staphylococcus aureus-protein based adjuvant Sbi. Here we analyse the sensitivity of these constructs to thermal denaturation and demonstrate for the first time the benefits of ensilication in conferring these vaccine-relevant proteins with protection against temperature-induced loss of structure and function without the need for refrigeration. Our results reveal the potential of ensilication in facilitating the storage and transport of vaccines at ambient temperatures in the future and therefore in delivering life-saving vaccines globally, and in particular to remote areas of developing countries where disease rates are often highest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。