Improving hard metal implant and soft tissue integration by modulating the "inflammatory-fibrous complex" response

通过调节“炎症纤维复合物”反应改善硬金属植入物和软组织的整合

阅读:8
作者:Peina Huang, Jieyun Xu, Lv Xie, Guangqi Gao, Shoucheng Chen, Zhuohong Gong, Xiaomei Lao, Zhengjie Shan, Jiamin Shi, Zhaocai Zhou, Zhuofan Chen, Yang Cao, Yan Wang, Zetao Chen

Abstract

Soft tissue integration is one major difficulty in the wide applications of metal materials in soft tissue-related areas. The inevitable inflammatory response and subsequent fibrous reaction toward the metal implant is one key response for metal implant-soft tissue integration. It is of great importance to modulate this inflammatory-fibrous response, which is mainly mediated by the multidirectional interaction between fibroblasts and macrophages. In this study, macrophages are induced to generate M1 and M2 macrophage immune microenvironments. Their cytokine profiles have been proven to have potentially multi-regulatory effects on fibroblasts. The multi-reparative effects of soft tissue cells (human gingival fibroblasts) cultured on metal material (titanium alloy disks) in M1 and M2 immune microenvironments are then dissected. Fibroblasts in the M1 immune microenvironment tend to aggravate the inflammatory response in a pro-inflammatory positive feedback loop, while M2 immune microenvironment enhances multiple functions of fibroblasts in soft tissue integration, including soft tissue regeneration, cell adhesion on materials, and contraction to immobilize soft tissue. Enlighted by the close interaction between macrophages and fibroblasts, we propose the concept of an "inflammatory-fibrous complex" to disclose possible methods of precisely and effectively modulating inflammatory and fibrous responses, thus advancing the development of metal soft tissue materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。