Wnt10b-GSK3β-dependent Wnt/STOP signaling prevents aneuploidy in human somatic cells

Wnt10b-GSK3β依赖的Wnt/STOP信号可防止人类体细胞非整倍体

阅读:11
作者:Yu-Chih Lin, Alexander Haas, Anja Bufe, Sabnam Parbin, Magdalena Hennecke, Oksana Voloshanenko, Julia Gross, Michael Boutros, Sergio P Acebron, Holger Bastians

Abstract

Wnt signaling is crucial for proper development, tissue homeostasis and cell cycle regulation. A key role of Wnt signaling is the GSK3β-mediated stabilization of β-catenin, which mediates many of the critical roles of Wnt signaling. In addition, it was recently revealed that Wnt signaling can also act independently of β-catenin. In fact, Wnt mediated stabilization of proteins (Wnt/STOP) that involves an LRP6-DVL-dependent signaling cascade is required for proper regulation of mitosis and for faithful chromosome segregation in human somatic cells. We show that inhibition of Wnt/LRP6 signaling causes whole chromosome missegregation and aneuploidy by triggering abnormally increased microtubule growth rates in mitotic spindles, and this is mediated by increased GSK3β activity. We demonstrate that proper mitosis and maintenance of numerical chromosome stability requires continuous basal autocrine Wnt signaling that involves secretion of Wnts. Importantly, we identified Wnt10b as a Wnt ligand required for the maintenance of normal mitotic microtubule dynamics and for proper chromosome segregation. Thus, a self-maintaining Wnt10b-GSK3β-driven cellular machinery ensures the proper execution of mitosis and karyotype stability in human somatic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。