Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation

施肥可以形成一个组织良好的细菌分解者群落,加速稻草降解

阅读:8
作者:Yushan Zhan, Wenjing Liu, Yuanyuan Bao, Jianwei Zhang, Evangelos Petropoulos, Zhongpei Li, Xiangui Lin, Youzhi Feng

Abstract

Straw, mainly dry stalks of crops, is an agricultural byproduct. Its incorporation to soils via microbial redistribution is an environment-friendly way to increase fertility. Fertilization influences soil microorganisms and straw degradation. However, our up to date knowledge on the responses of the straw decomposers to fertilization remains elusive. To this end, inoculated with paddy soils with 26-year applications of chemical fertilizers, organic amendments or controls without fertilization, microcosms were anoxically incubated with 13C-labelled rice straw amendment. DNA-based stable isotope probing and molecular ecological network analysis were conducted to unravel how straw degrading bacterial species shift in responses to fertilizations, as well as evaluate what their roles/links in the microbiome are. It was found that only a small percentage of the community ecotypes was participating into straw degradation under both fertilizations. Fertilization, especially with organic amendments decreased the predominance of Firmicutes- and Acidobacteria-like straw decomposers but increased those of the copiotrophs, such as β-Proteobacteria and Bacteroidetes due to increased soil fertility. For the same reason, fertilization shifted the hub species towards those of high degrading potential and created a more stable and efficient microbial consortium. These findings indicate that fertilization shapes a well-organized community of decomposers for accelerated straw degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。