3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration

3D 打印 NIR 响应形状记忆聚氨酯/镁支架,紧密接触,可实现稳健的骨再生

阅读:6
作者:Yuanchi Zhang, Cairong Li, Wei Zhang, Junjie Deng, Yangyi Nie, Xiangfu Du, Ling Qin, Yuxiao Lai

Abstract

Patients with bone defects suffer from a high rate of disability and deformity. Poor contact of grafts with defective bones and insufficient osteogenic activities lead to increased loose risks and unsatisfied repair efficacy. Although self-expanding scaffolds were developed to enhance bone integration, the limitations on the high transition temperature and the unsatisfied bioactivity hindered greatly their clinical application. Herein, we report a near-infrared-responsive and tight-contacting scaffold that comprises of shape memory polyurethane (SMPU) as the thermal-responsive matrix and magnesium (Mg) as the photothermal and bioactive component, which fabricated by the low temperature rapid prototyping (LT-RP) 3D printing technology. As designed, due to synergistic effects of the components and the fabrication approach, the composite scaffold possesses a homogeneously porous structure, significantly improved mechanical properties and stable photothermal effects. The programmed scaffold can be heated to recover under near infrared irradiation in 60s. With 4 wt% Mg, the scaffold has the balanced shape fixity ratio of 93.6% and shape recovery ratio of 95.4%. The compressed composite scaffold could lift a 100 g weight under NIR light, which was more than 1700 times of its own weight. The results of the push-out tests and the finite element analysis (FEA) confirmed the tight-contacting ability of the SMPU/4 wt%Mg scaffold, which had a signficant enhancement compared to the scaffold without shape memory effects. Furthermore, The osteopromotive function of the scaffold has been demonstrated through a series of in vitro and in vivo studies. We envision this scaffold can be a clinically effective strategy for robust bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。