Engineered M2 macrophage-derived extracellular vesicles with platelet membrane fusion for targeted therapy of atherosclerosis

工程化 M2 巨噬细胞衍生的细胞外囊泡与血小板膜融合用于动脉粥样硬化的靶向治疗

阅读:5
作者:Lan Xie, Jinyong Chen, Haochang Hu, Yuan Zhu, Xiying Wang, Siyu Zhou, Feifan Wang, Meixiang Xiang

Abstract

Atherosclerosis is featured as chronic low-grade inflammation in the arteries, which leads to the formation of plaques rich in lipids. M2 macrophage-derived extracellular vesicles (M2EV) have significant potential for anti-atherosclerotic therapy. However, their therapeutic effectiveness has been hindered by their limited targeting capability in vivo. The objective of this study was to create the P-M2EV (platelet membrane-modified M2EV) using the membrane fusion technique in order to imitate the interaction between platelets and macrophages. P-M2EV exhibited excellent physicochemical properties, and microRNA (miRNA)-sequencing revealed that the extrusion process had no detrimental effects on miRNAs carried by the nanocarriers. Remarkably, miR-99a-5p was identified as the miRNA with the highest expression level, which targeted the mRNA of Homeobox A1 (HOXA1) and effectively suppressed the formation of foam cells in vitro. In an atherosclerotic low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model, the intravenous injection of P-M2EV showed enhanced targeting and greater infiltration into atherosclerotic plaques compared to regular extracellular vesicles. Crucially, P-M2EV successfully suppressed the progression of atherosclerosis without causing systemic toxicity. The findings demonstrated a biomimetic platelet-mimic system that holds great promise for the treatment of atherosclerosis in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。