Aluminum induces rapidly mitochondria-dependent programmed cell death in Al-sensitive peanut root tips

铝在对铝敏感的花生根尖中快速诱导线粒体依赖性程序性细胞死亡

阅读:5
作者:Wen-Jing Huang, Thet Lwin Oo, Hu-Yi He, Ai-Qin Wang, Jie Zhan, Chuang-Zhen Li, Shan-Qing Wei, Long-Fei He

Background

Although many studies suggested that aluminum (Al) induced programmed cell death (PCD) in plants, the mechanism of Al-induced PCD and its effects in Al tolerance is limited. This study was to investigate the mechanism and type of Al induced PCD and the relationship between PCD and Al tolerance.

Conclusions

Al-induced PCD is earlier and faster in Al-sensitive peanut cultivar than in Al-tolerant cultivar. There is a negative relationship between PCD and Al resistance. Mitochondria- dependence PCD was induced by Al and ROS was involved in this process. The mechanism can be explained by the model of acceleration of senescence under Al stress.

Results

In this study, two genotypes of peanut 99-1507 (Al tolerant) and ZH2 (Al sensitive) were used to investigate Al-induced PCD. Peanut root growth inhibition induced by AlCl3 was concentration and time-dependent in two peanut varieties. AlCl3 at 100 μM could induce rapidly peanut root tip PCD involved in DNA cleavage, typical apoptotic chromatin condensation staining with DAPI, apoptosis related gene Hrs203j expression and cytochrome C (Cyt c) release from mitochondria to cytosol. Caspase3-like protease was activated by Al; it was higher in ZH2 than in 99-1507. Al increased the opening of mitochondrial permeability transition pore (MPTP), decreased inner membrane potential (ΔΨm) of mitochondria. Compared with the control, Al stress increased O2•- and H2O2 production in mitochondria. Reactive oxygen species (ROS) burst was produced at Al treatment for 4 h. Conclusions: Al-induced PCD is earlier and faster in Al-sensitive peanut cultivar than in Al-tolerant cultivar. There is a negative relationship between PCD and Al resistance. Mitochondria- dependence PCD was induced by Al and ROS was involved in this process. The mechanism can be explained by the model of acceleration of senescence under Al stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。