DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia

DNA 甲基化对于牙齿发育不全至关重要:对散发性非综合征性无牙症和牙齿发育不全的影响

阅读:9
作者:Jing Wang, Ke Sun, Yun Shen, Yuanzhi Xu, Jing Xie, Renhuan Huang, Yiming Zhang, Chenyuan Xu, Xu Zhang, Raorao Wang, Yunfeng Lin

Abstract

Hypodontia is caused by interactions among genetic, epigenetic, and environmental factors during tooth development, but the actual mechanism is unknown. DNA methylation now appears to play a significant role in abnormal developments, flawed phenotypes, and acquired diseases. Methylated DNA immunoprecipitation (MeDIP) has been developed as a new method of scanning large-scale DNA-methylation profiles within particular regions or in the entire genome. Here, we performed a genome-wide scan of paired DNA samples obtained from 4 patients lacking two mandibular incisors and 4 healthy controls with normal dentition. We scanned another female with non-syndromic anodontia and her younger brother with the same gene mutations of the PAX9,MSX1,AXIN2 and EDA, but without developmental abnormalities in the dentition. Results showed significant differences in the methylation level of the whole genome between the hypodontia and the normal groups. Nine genes were spotted, some of which have not been associated with dental development; these genes were related mainly to the development of cartilage, bone, teeth, and neural transduction, which implied a potential gene cascade network in hypodontia at the methylation level. This pilot study reveals the critical role of DNA methylation in hypodontia and might provide insights into developmental biology and the pathobiology of acquired diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。