An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects

静电封装策略促进 3D 打印聚电解质支架修复骨质疏松性骨缺损

阅读:3
作者:Xiang Gao, Jirong Yang, Lingna Liu, Zilong Hu, Rui Lin, Lan Tang, Mei Yu, Zhiping Chen, Chongjian Gao, Min Zhang, Li Li, Changshun Ruan, Yanzhi Liu

Abstract

Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL). Benefiting from this strategy, SAB, an unstable and untargetable plant-derived osteogenic compound, was effectively encapsulated in APS@P, demonstrating stable and precise delivery with improved therapeutic efficacy. Owing to SAB-mediated bone homeostasis, APS@P significantly promoted angiogenesis and new bone formation while suppressing bone resorption, resulting in a significant 146 % increase in bone mass and improved microstructure compared to the OBD group. It was confirmed that the encapsulation of SAB into APS@P could promote the osteogenic differentiation of MSCs by stimulating Tph2/Wnt/β-catenin signaling axis, coupled with the stimulation of type H angiogenesis and the suppression of RANKL-mediate bone resorption, thereby enhance OBD repair. This study provides a universal platform for enhancing the bioactivity of tissue-engineered scaffolds, offering an effective solution for the efficient regeneration of osteoporotic bone.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。