The effect of hypoxia on free and encapsulated adult porcine islets-an in vitro study

缺氧对游离和封装成年猪胰岛的影响-体外研究

阅读:8
作者:Sudhakar Muthyala, Susan Safley, Kereen Gordan, Graham Barber, Collin Weber, Athanassios Sambanis

Background

Adult porcine islets (APIs) constitute a promising alternative to human islets in treating type 1 diabetes. The intrahepatic site has been used in preclinical primate studies of API xenografts; however, an estimated two-thirds of donor islets are destroyed after intraportal infusion due to a number of factors, including the instant blood-mediated inflammatory reaction (IBMIR), immunosuppressant toxicity, and poor reestablishment of extracellular matrix connections. Intraperitoneal (ip) transplantation of non-vascularized encapsulated islets offers several advantages over intrahepatic transplantation of free islets, including avoidance of IBMIR, immunoprotection, accommodation of a larger graft volume, and reduced risk of hemorrhage. However, there exists evidence that the peritoneal site is hypoxic, which likely impedes islet function.

Conclusions

Hypoxia (2%-5% oxygen or pO2 : 15.2-38.0 mm Hg) affects the viability, metabolic activity, and insulin secretion of both free and encapsulated APIs over a six-day culture period. Encapsulation augments islet integrity under hypoxia, but it does not prevent loss of viability, metabolic activity, or insulin secretion.

Methods

We tested the effect of hypoxia (2%-5% oxygen or pO2 : 15.2-38.0 mm Hg) on free and encapsulated APIs over a period of 6 days in culture. Free and encapsulated APIs under normoxia served as controls. Islet viability was evaluated with a viability/cytotoxicity assay using calcein AM and ethidium bromide on days 1, 3, and 6 of culture. Alamar blue assay was used to measure the metabolic activity on days 1 and 6. Insulin in spent medium was assayed by ELISA on days 1 and 6.

Results

Viability staining indicated that free islet clusters lost their integrity and underwent severe necrosis under hypoxia; encapsulated islets remained intact, even when they began to undergo necrosis. Under hypoxia, the metabolic activity and insulin secretion (normalized to metabolic activity) of both free and encapsulated islets decreased relative to islets cultured under normoxic conditions. Conclusions: Hypoxia (2%-5% oxygen or pO2 : 15.2-38.0 mm Hg) affects the viability, metabolic activity, and insulin secretion of both free and encapsulated APIs over a six-day culture period. Encapsulation augments islet integrity under hypoxia, but it does not prevent loss of viability, metabolic activity, or insulin secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。