Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway

氧化锌纳米粒子通过 HIF-1α/BNIP3/LC3B 介导的线粒体自噬途径下调 β-catenin 抑制骨肉瘤转移

阅读:3
作者:Guanping He, Jing-Jun Nie, Xiao Liu, Zihao Ding, Peng Luo, Yu Liu, Bo-Wen Zhang, Renxian Wang, Xiaoguang Liu, Yong Hai, Da-Fu Chen

Abstract

Osteosarcoma (OS) therapy faces many challenges, especially the poor survival rate once metastasis occurs. Therefore, it is crucial to explore new OS treatment strategies that can efficiently inhibit OS metastasis. Bioactive nanoparticles such as zinc oxide nanoparticles (ZnO NPs) can efficiently inhibit OS growth, however, the effect and mechanisms of them on tumor metastasis are still not clear. In this study, we firstly prepared well-dispersed ZnO NPs and proved that ZnO NPs can inhibit OS metastasis-related malignant behaviors including migration, invasion, and epithelial-mesenchymal transition (EMT). RNA-Seqs found that differentially expressed genes (DEGs) in ZnO NP-treated OS cells were enriched in wingless/integrated (Wnt) and hypoxia-inducible factor-1 (HIF-1) signaling pathway. We further proved that Zn2+ released from ZnO NPs induced downregulation of β-catenin expression via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. ZnO NPs combined with ICG-001, a β-catenin inhibitor, showed a synergistic inhibitory effect on OS lung metastasis and a longer survival time. In addition, tissue microarray (TMA) of OS patients also detected much higher β-catenin expression which indicated the role of β-catenin in OS development. In summary, our current study not only proved that ZnO NPs can inhibit OS metastasis by degrading β-catenin in HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, but also provided a far-reaching potential of ZnO NPs in clinical OS treatment with metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。