Noninvasive monitoring of pharmacodynamics and kinetics of a death receptor 5 antibody and its enhanced apoptosis induction in sequential application with doxorubicin

无创监测死亡受体 5 抗体的药效学和动力学及其与阿霉素序贯应用增强的凋亡诱导作用

阅读:4
作者:Thomas G Weber, Thomas Pöschinger, Stefanie Galbán, Alnawaz Rehemtulla, Werner Scheuer

Abstract

Induction of apoptosis plays a crucial role in the response of tumors to treatment. Thus, we investigated the pharmacodynamics and tumor saturation kinetics of a death receptor 5 antibody (anti-DR5) when combined with chemotherapeutics. For our investigations, we applied an imaging method that allows monitoring of apoptosis noninvasively in living mice. A stably transfected apoptosis reporter based on split luciferase technology facilitates to screen various chemotherapeutics and anti-DR5 on their ability to induce apoptosis in glioblastoma cells in vitro as well as in vivo. We found that doxorubicin (DOX) treatment in vitro led to significant apoptosis induction within 48 hours and to a 2.3-fold increased anti-DR5 binding to the cell surface. In contrast, cisplatin and 5-fluorouracil (5-FU) treatment altered anti-DR5 binding only marginally. Induction of apoptosis by treatment with anti-DR5 was dose- and time-dependent (both in vitro and in vivo). Simultaneous visualization of fluorescence-labeled anti-DR5 in tumor tissue and apoptosis revealed maximal apoptosis induction immediately after the compound had reached tumor site. Regarding combination therapy of anti-DR5 and DOX, we found that the sequential application of DOX before anti-DR5 resulted in synergistically enhanced apoptosis reporter activity. In striking contrast, anti-DR5 given before DOX did not lead to increased apoptosis induction. We suggest that DOX-induced recruitment of DR5 to the cell surface impacts the enhanced apoptotic effect that can be longitudinally monitored by apoptosis imaging. This study demonstrates that the combination of apoptosis and fluorescence imaging is an excellent method for optimizing dosing and treatment schedules in preclinical cancer models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。