Drought stress tolerance and metabolomics of Medicago sativa induced by Bacillus amyloliquefaciens DGL1

解淀粉芽孢杆菌DGL1诱导紫花苜蓿抗旱性及代谢组学研究

阅读:5
作者:Xue Yang, Yongli Xie, Youming Qiao, Feifei Chang, Tian Wang, Junxi Li, Lingling Wu, Chen Li, Ying Gao

Discussion

Strain DGL1 enhances the drought suitability of alfalfa and has the potential for dryland development as a biological agent.

Methods

The exopolysaccharides (EPS), 1-Aminocyclopropane-1-carboxylate deaminase (ACC), and phosphorus solubilizing capacity of DGL1 were determined. The effects of a DGL1 suspension on alfalfa biomass, physiological indexes, degree of peroxidation of cell membranes, and activity of antioxidant enzymes were determined after irrigating roots under drought stress. The effects on soil physicochemical properties were also evaluated, and metabolomics analysis was performed to explore the effect of DGL1 on the metabolites of alfalfa under drought stress.

Results

Strain DGL1 produced extracellular polysaccharide EPS and ACC deaminase and was capable of phosphorus solubilization. Treatment with DGL1 increased the biomass of alfalfa under different degrees of drought stress, significantly increased the activities of alfalfa antioxidant enzymes Super Oxide Dismutase (SOD), Peroxidase (POD), and catalase (CAT), reduced the content of MDA and H2O2, and increased the content of quick-acting phosphorus, quick-acting potassium, ammonium nitrogen, and nitrate nitrogen in the soil, thus improving soil fertility. Through metabolomics analysis, DGL1 was shown to affect amino acid metabolic pathways, such as arginine, leucine, glutamate, and tyrosine, as well as the levels of energy-providing polysaccharides and lipids, in alfalfa under 15% PEG-6000 drought stress, enhancing alfalfa's capacity to resist drought stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。