Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy

可喷涂纳米胶束水凝胶和炎症性肠病患者细胞芯片用于开发肠道病变特异性治疗

阅读:8
作者:Hyo-Jin Yoon, Songhyun Lee, Tae Young Kim, Seung Eun Yu, Hye-Seon Kim, Young Shin Chung, Seyong Chung, Suji Park, Yong Cheol Shin, Eun Kyung Wang, Jihye Noh, Hyun Jung Kim, Cheol Ryong Ku, Hong Koh, Chang-Soo Kim, Joon-Sang Park, Young Min Shin, Hak-Joon Sung

Abstract

All-in-one treatments represent a paradigm shift in future medicine. For example, inflammatory bowel disease (IBD) is mainly diagnosed by endoscopy, which could be applied for not only on-site monitoring but also the intestinal lesion-targeted spray of injectable hydrogels. Furthermore, molecular conjugation to the hydrogels would program both lesion-specific adhesion and drug-free therapy. This study validated this concept of all-in-one treatment by first utilizing a well-known injectable hydrogel that underwent efficient solution-to-gel transition and nanomicelle formation as a translatable component. These properties enabled spraying of the hydrogel onto the intestinal walls during endoscopy. Next, peptide conjugation to the hydrogel guided endoscopic monitoring of IBD progress upon adhesive gelation with subsequent moisturization of inflammatory lesions, specifically by nanomicelles. The peptide was designed to mimic the major component that mediates intestinal interaction with Bacillus subtilis flagellin during IBD initiation. Hence, the peptide-guided efficient adhesion of the hydrogel nanomicelles onto Toll-like receptor 5 (TLR5) as the main target of flagellin binding and Notch-1. The peptide binding potently suppressed inflammatory signaling without drug loading, where TLR5 and Notch-1 operated collaboratively through downstream actions of tumor necrosis factor-alpha. The results were produced using a human colorectal cell line, clinical IBD patient cells, gut-on-a-chip, a mouse IBD model, and pig experiments to validate the translational utility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。