Photoluminescent biodegradable polyorganophosphazene: A promising scaffold material for in vivo application to promote bone regeneration

光致发光可生物降解聚有机磷腈:一种有前途的用于体内促进骨再生的支架材料

阅读:5
作者:Yiqian Huang, Zhaohui Huang, Huanhuan Liu, Xu Zhang, Qing Cai, Xiaoping Yang

Abstract

Tissue engineering scaffolds made of conventional aliphatic polyesters are inherently non-fluorescent, which results in their in vivo degradation hard to be visualized. Photoluminescent biodegradable polyorganophosphazenes (PPOPs) are synthesized by introducing fluorophores onto the polyphosphazene backbone via nucleophilic substitution reaction. In this study, a fluorophore (termed as TPCA), derived from citric acid and 2-aminoethanethiol, was co-substituted with alanine ethyl ester onto the polyphosphazene backbone to obtain a photoluminescent biodegradable POPP (termed as PTA). The scaffolds made of PTA demonstrated non-cytotoxicity and cell affinity, particularly, capacity in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs). In vivo evaluations using the rat calvarial defect model confirmed its strong potential in enhancing osteogenesis, more importantly, the in vivo degradation of the PTA scaffold could be monitored via its fluorescence intensity alongside implantation time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。