Enterococcal Linear Plasmids Adapt to Enterococcus faecium and Spread within Multidrug-Resistant Clades

肠球菌线性质粒适应屎肠球菌并在耐多药菌株中传播

阅读:6
作者:Yusuke Hashimoto, Masato Suzuki, Sae Kobayashi, Yuki Hirahara, Jun Kurushima, Hidetada Hirakawa, Takahiro Nomura, Koichi Tanimoto, Haruyoshi Tomita

Abstract

Antimicrobial resistance (AMR) of bacterial pathogens, including enterococci, is a global concern, and plasmids are crucial for spreading and maintaining AMR genes. Plasmids with linear topology were identified recently in clinical multidrug-resistant enterococci. The enterococcal linear-form plasmids, such as pELF1, confer resistance to clinically important antimicrobials, including vancomycin; however, little information exists about their epidemiological and physiological effects. In this study, we identified several lineages of enterococcal linear plasmids that are structurally conserved and occur globally. pELF1-like linear plasmids show plasticity in acquiring and maintaining AMR genes, often via transposition with the mobile genetic element IS1216E. This linear plasmid family has several characteristics enabling long-term persistence in the bacterial population, including high horizontal self-transmissibility, low-level transcription of plasmid-carried genes, and a moderate effect on the Enterococcus faecium genome alleviating fitness cost and promoting vertical inheritance. Combining all of these factors, the linear plasmid is an important factor in the spread and maintenance of AMR genes among enterococci.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。