Ion interactions in the high-affinity binding locus of a voltage-gated Ca(2+) channel

电压门控 Ca(2+) 通道高亲和力结合位点的离子相互作用

阅读:6
作者:R K Cloues, S M Cibulsky, W A Sather

Abstract

The selectivity filter of voltage-gated Ca(2+) channels is in part composed of four Glu residues, termed the EEEE locus. Ion selectivity in Ca(2+) channels is based on interactions between permeant ions and the EEEE locus: in a mixture of ions, all of which can pass through the pore when present alone, those ions that bind weakly are impermeant, those that bind more strongly are permeant, and those that bind more strongly yet act as pore blockers as a consequence of their low rate of unbinding from the EEEE locus. Thus, competition among ion species is a determining feature of selectivity filter function in Ca(2+) channels. Previous work has shown that Asp and Ala substitutions in the EEEE locus reduce ion selectivity by weakening ion binding affinity. Here we describe for wild-type and EEEE locus mutants an analysis at the single channel level of competition between Cd(2+), which binds very tightly within the EEEE locus, and Ba(2+) or Li(+), which bind less tightly and hence exhibit high flux rates: Cd(2+) binds to the EEEE locus approximately 10(4)x more tightly than does Ba(2+), and approximately 10(8)x more tightly than does Li(+). For wild-type channels, Cd(2+) entry into the EEEE locus was 400x faster when Li(+) rather than Ba(2+) was the current carrier, reflecting the large difference between Ba(2+) and Li(+) in affinity for the EEEE locus. For the substitution mutants, analysis of Cd(2+) block kinetics shows that their weakened ion binding affinity can result from either a reduction in blocker on rate or an enhancement of blocker off rate. Which of these rate effects underlay weakened binding was not specified by the nature of the mutation (Asp vs. Ala), but was instead determined by the valence and affinity of the current-carrying ion (Ba(2+) vs. Li(+)). The dependence of Cd(2+) block kinetics upon properties of the current-carrying ion can be understood by considering the number of EEEE locus oxygen atoms available to interact with the different ion pairs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。