Genistein inhibited endocytosis and fibrogenesis in keloid via CTGF signaling pathways

染料木黄酮通过 CTGF 信号通路抑制瘢痕疙瘩的内吞作用和纤维化

阅读:25
作者:Chun-Te Lu, Jiunn-Liang Ko, Chu-Chyn Ou, Chih-Ting Hsu, Yu-Ping Hsiao, Sheau-Chung Tang

Background

This study aimed to evaluate soy isoflavones' effect and potential use-specifically genistein-in treating human keloid fibroblast cells (KFs) and in a keloid tissue culture model.

Conclusions

This study indicated that genistein-induced p53 undergoes cell cycle arrest via the CTGF pathway-inhibited keloid cultured cells, and genistein suppressed the primary keloid cell migration, suggesting that our research provides a new strategy for developing drugs for treating keloids.

Methods

To investigate the effects of genistein on keloid, a wound-healing assay was performed to detect cell migration. Flow cytometry was used to measure apoptosis. Western blotting and immunofluorescence staining were performed to detect the expression of target proteins. KF tissues were isolated, cultured, and divided into the control, silenced connective tissue growth factor (CTGF) proteins, and shNC (negative control) groups.

Results

Genistein suppressed cell proliferation and migration, triggering the cell cycle at the G2/M phase and increasing the expression of p53 dose-dependent in keloids. Genistein inhibited the expression of COL1A1, FN, and CTGF mRNA and protein. Knockdown CTGF reduced the migrated ability in KFs. Genistein also abated TGF-β1-induced keloid fibrosis through the endocytosis model. Separated and cultured the keloid patient's tissues decreased the cell migration ability by genistein treatment and was time-dose dependent. Conclusions: This study indicated that genistein-induced p53 undergoes cell cycle arrest via the CTGF pathway-inhibited keloid cultured cells, and genistein suppressed the primary keloid cell migration, suggesting that our research provides a new strategy for developing drugs for treating keloids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。