Conclusion
Both stevia and nano-stevia demonstrates potent anti-apoptotic activity in the liver tissue of diabetic rats by targeting PEPCK/GCK genes and INSR pathway. These finding show that nano-stevia has more potential to reduce the liver injury caused by STZ-induced diabetes in rats and hence can be considered a valid agent and alternative therapy for attenuating complications of type 2 DM.
Methods
Single-dose intraperitoneal injection of STZ (50 mg/kg body weight) was used to establish diabetic model. The mRNA levels of PEPCK and GCK genes and the protein level of INSR were evaluated by Real time-PCR and Western blot assays, respectively. TUNEL assay was used to detect apoptotic cell death in the liver tissue.
Results
Diabetic rats exhibited significantly reduced levels of INSR (*** P < 0.001) as well as elevated levels of PEPCK (*** P < 0.001). Both stevia and nano-stevia were capable of increasing levels of GCK and INSR and reducing levels of PEPCK (## P < 0.01 and ### P < 0.001, respectively). In addition, significantly increased number of apoptotic cell death was seen in the liver tissue of diabetic rats (*** P < 0.001) which was markedly mitigated by treatment with both Stevia and nano-Stevia (#P < 0.05 and ## P < 0.01, respectively).
Supplementary Information
The online version contains supplementary material available at 10.1007/s40200-023-01278-2.