Preliminary Screening of a Classical Ayurvedic Formulation for Anticonvulsant Activity

对经典阿育吠陀配方的抗惊厥活性进行初步筛选

阅读:9
作者:Arnab Dhar, Santosh Kumar Maurya, Ashish Mishra, Gireesh Kumar Singh, Manoj Kumar Singh, Ankit Seth

Aim

A polyherbal formulation (containing Terminalia chebula Retz., Asparagus racemosus Willd., Embelia ribes Burm. F, Acorus calamus L., Tinospora cordifolia (Willd.) Miers, Convolvulus pluricaulis Choisy, Saussurea lappa C.B.Clarke, Achyranthes aspera L.) is mentioned in Ayurvedic classics Bhaiṣajya Ratnāvali. The aim of the study was to evaluate the anticonvulsant activity of the formulation in Maximum electroshock and Pentylenetetrazole induced convulsions in rats. Materials and

Background

Epilepsy is a serious and complex central nervous system disorder associated with recurrent episodes of convulsive seizures due to the imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmitters level in the brain. The available treatments are neither competent to control the seizures nor prevent progress of disease. Since ages, Herbal medicines have remained important sources of medicines in many parts of world which is evidenced through their uses in traditional systems of medicine i.e. Ayurveda, Siddha, Unani, Homeopathy and Chinese etc.

Conclusion

These findings suggest that PHF might have possible efficacy in the treatment of epilepsy.

Methods

In the present study, a polyherbal formulation was developed as directed by classical text and evaluated for the anticonvulsant activity using Maximal Electroshock Shock (MES) and Pentylenetetrazole (PTZ) induced convulsions in rats. Statistical comparison was done by one way ANOVA followed by the Tukey's multiple comparison test.

Results

The obtained results showed that the PHF had a protective role on epilepsy. Treatment with PHF significantly improves antioxidant enzymes activities of superoxide dismutase (SOD) and glutathione (GSH) levels significantly as compared to controls. PHF also significantly decreased malonaldialdehyde (MDA) levels in the brain. Moreover, it also attenuated the PTZ-induced increase in the activity of GABA-T in the rat brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。