Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane

胞质体为酵母质膜的快速扩张提供了膜储存器

阅读:2
作者:Ruth Kabeche, Louisa Howard, James B Moseley

Abstract

Cell surface area rapidly increases during mechanical and hypoosmotic stresses. Such expansion of the plasma membrane requires 'membrane reservoirs' that provide surface area and buffer membrane tension, but the sources of this membrane remain poorly understood. In principle, the flattening of invaginations and buds within the plasma membrane could provide this additional surface area, as recently shown for caveolae in animal cells. Here, we used microfluidics to study the rapid expansion of the yeast plasma membrane in protoplasts, which lack the rigid cell wall. To survive hypoosmotic stress, yeast cell protoplasts required eisosomes, protein-based structures that generate long invaginations at the plasma membrane. Both budding yeast and fission yeast protoplasts lacking eisosomes were unable to expand like wild-type protoplasts during hypoosmotic stress, and subsequently lysed. By performing quantitative fluorescence microscopy on single protoplasts, we also found that eisosomes disassembled as surface area increased. During this process, invaginations generated by eisosomes at the plasma membrane became flattened, as visualized by scanning electron microscopy. We propose that eisosomes serve as tension-dependent membrane reservoirs for expansion of yeast cells in an analogous manner to caveolae in animal cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。