Identification of UBE2N as a biomarker of Alzheimer's disease by combining WGCNA with machine learning algorithms

将 WGCNA 与机器学习算法相结合,鉴定 UBE2N 为阿尔茨海默病的生物标志物

阅读:7
作者:Gangyi Feng, Manli Zhong, Hudie Huang, Pu Zhao, Xiaoyu Zhang, Tao Wang, Huiling Gao, He Xu

Abstract

Alzheimer's disease (AD) is the most common cause of dementia, emphasizing the critical need for the development of biomarkers that facilitate accurate and objective assessment of disease progression for early detection and intervention to delay its onset. In our study, three AD datasets from the Gene Expression Omnibus (GEO) database were integrated for differential expression analysis, followed by a weighted gene co-expression network analysis (WGCNA), and potential AD biomarkers were screened. Our study identified UBE2N as a promising biomarker for AD. Functional enrichment analysis revealed that UBE2N is associated with synaptic vesicle cycling and T cell/B cell receptor signaling pathways. Notably, UBE2N expression levels were found to be significantly reduced in the cortex and hippocampus of the TauP301S mice. Furthermore, analysis of single-cell data from AD patients demonstrated the association of UBE2N and T cell function. These findings underscore the potential of UBE2N as a valuable biomarker for AD, offering important insights for diagnosis and targeted therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。