Integration of pH Control into Chi.Bio Reactors and Demonstration with Small-Scale Enzymatic Poly(ethylene terephthalate) Hydrolysis

pH 控制与 Chi.Bio 反应器的集成以及小规模聚对苯二甲酸乙二醇酯酶水解的演示

阅读:12
作者:Mackenzie C R Denton, Natasha P Murphy, Brenna Norton-Baker, Mauro Lua, Harrison Steel, Gregg T Beckham

Abstract

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors. In this work, we further expand the capabilities of the Chi.Bio system by enabling continuous pH monitoring and control through hardware and software modifications. For hardware modifications, we sourced low-cost, commercial pH circuits and made straightforward modifications to the Chi.Bio head plate to enable continuous pH monitoring. For software integration, we introduced closed-loop feedback control of the pH measured inside the Chi.Bio reactors and integrated a pH-control module into the existing Chi.Bio user interface. We demonstrated the utility of pH control through the small-scale depolymerization of the synthetic polyester, poly(ethylene terephthalate) (PET), using a benchmark cutinase enzyme, and compared this to 250 mL bioreactor hydrolysis reactions. The results in terms of PET conversion and rate, measured both by base addition and product release profiles, are statistically equivalent, with the Chi.Bio system allowing for a 20-fold reduction of purified enzyme required relative to the 250 mL bioreactor setup. Through inexpensive modifications, the ability to conduct pH control in Chi.Bio reactors widens the potential slate of biochemical reactions and biological cultivations for study in this system, and may also be adapted for use in other bioreactor platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。