Neural Network-Based Prediction Model to Investigate the Influence of Temperature and Moisture on Vibration Characteristics of Skew Laminated Composite Sandwich Plates

基于神经网络的预测模型研究温度和湿度对斜交层压复合材料夹层板振动特性的影响

阅读:4
作者:Vinayak Kallannavar, Subhaschandra Kattimani, Manzoore Elahi M Soudagar, M A Mujtaba, Saad Alshahrani, Muhammad Imran

Abstract

The present study deals with the development of a prediction model to investigate the impact of temperature and moisture on the vibration response of a skew laminated composite sandwich (LCS) plate using the artificial neural network (ANN) technique. Firstly, a finite element model is generated to incorporate the hygro-elastic and thermo-elastic characteristics of the LCS plate using first-order shear deformation theory (FSDT). Graphite-epoxy composite laminates are used as the face sheets, and DYAD606 viscoelastic material is used as the core material. Non-linear strain-displacement relations are used to generate the initial stiffness matrix in order to represent the stiffness generated from the uniformly varying temperature and moisture concentrations. The mechanical stiffness matrix is derived using linear strain-displacement associations. Then the results obtained from the numerical model are used to train the ANN. About 11,520 data points were collected from the numerical analysis and were used to train the network using the Levenberg-Marquardt algorithm. The developed ANN model is used to study the influence of various process parameters on the frequency response of the system, and the outcomes are compared with the results obtained from the numerical model. Several numerical examples are presented and conferred to comprehend the influence of temperature and moisture on the LCS plates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。