Spatial and spectral characteristics in realizations of broadband terahertz spectroscopy on a subwavelength scale

亚波长尺度宽带太赫兹光谱实现中的空间和光谱特性

阅读:5
作者:Alexis N Guidi, Michael E Mitchell, Jonathan F Holzman

Abstract

In this work, we take aim at the fundamental challenge for realizations of broadband terahertz (THz) spectroscopy on a subwavelength scale. We introduce apertured THz microjets in this effort to resolve the fundamental limits of spatial resolution and spectral bandwidth. The THz microjets are formed as intense foci at the rear of engineered (microcomposite) spheres and are coupled through subwavelength (circular) apertures. Such coupling enables effective transmission of THz power through samples with broad spectral bandwidths and fine spatial resolutions. We show that the apertures function as high-pass filters, with their diameter d enabling strong transmission above a cutoff frequency fc. Our theoretical and experimental results reveal that the values for d and fc are prescribed by a fixed spatial-spectral product dfc, whereby reductions in d (to improve the spatial resolution) can raise fc into the targeted spectrum (at the expense of spectral bandwidth). We use this understanding to demonstrate broadband (0.3-0.7 THz) THz spectroscopy of lactose at the subwavelength (365 µm) scale. These results for apertured THz microjets represent a 20-fold improvement in spatial resolution over analogous apertured THz plane waves. Overall, our findings show promise for studies of carcinogenesis, pathogenesis, and the like.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。