Design, synthesis and biological evaluation of light-driven on-off multitarget AChE and MAO-B inhibitors

光驱动开关多靶点 AChE 和 MAO-B 抑制剂的设计、合成及生物学评价

阅读:5
作者:Marco Paolino, Mariagrazia Rullo, Samuele Maramai, Modesto de Candia, Leonardo Pisani, Marco Catto, Claudia Mugnaini, Antonella Brizzi, Andrea Cappelli, Massimo Olivucci, Federico Corelli, Cosimo D Altomare

Abstract

Neurodegenerative diseases are multifactorial disorders characterized by protein misfolding, oxidative stress, and neuroinflammation, finally resulting in neuronal loss and cognitive dysfunctions. Nowadays, an attractive strategy to improve the classical treatments is the development of multitarget-directed molecules able to synergistically interact with different enzymes and/or receptors. In addition, an interesting tool to refine personalized therapies may arise from the use of bioactive species able to modify their activity as a result of light irradiation. To this aim, we designed and synthesized a small library of cinnamic acid-inspired isomeric compounds with light modulated activity able to inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B), with remarkable selectivity over butyrylcholinesterase (BChE) and MAO-A, which have been investigated as the enzyme targets related to Alzheimer's disease (AD). The inhibitory activities were evaluated for the pure E-diastereomers and the E/Z-diastereomer mixtures, obtained upon UV irradiation. Molecular docking studies were carried out to rationalize the differences in the inhibition potency of the E and Z diastereomers of the best performing analogue 1c. Our preliminary findings may open-up the way for developing innovative multitarget photo-switch drugs against neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。