Old age causes de novo intracortical bone remodeling and porosity in mice

老年导致小鼠皮质内骨质重塑和孔隙度

阅读:9
作者:Marilina Piemontese, Maria Almeida, Alexander G Robling, Ha-Neui Kim, Jinhu Xiong, Jeff D Thostenson, Robert S Weinstein, Stavros C Manolagas, Charles A O'Brien, Robert L Jilka

Abstract

Decreased cortical thickness and increased cortical porosity are the key anatomic changes responsible for osteoporotic fractures in elderly women and men. The cellular basis of these changes is unbalanced endosteal and intracortical osteonal remodeling by the osteoclasts and osteoblasts that comprise the basic multicellular units (BMUs). Like humans, mice lose cortical bone with age, but unlike humans, this loss occurs in the face of sex steroid sufficiency. Mice are therefore an ideal model to dissect age-specific osteoporotic mechanisms. Nevertheless, lack of evidence for endosteal or intracortical remodeling in mice has raised questions about their translational relevance. We show herein that administration of the antiosteoclastogenic cytokine osteoprotegerin to Swiss Webster mice ablated not only osteoclasts, but also endosteal bone formation, demonstrating the occurrence of BMU-based endosteal remodeling. Femoral cortical thickness decreased in aged male and female C57BL/6J mice, as well as F1 hybrids of C57BL/6J and BALB/cBy mice. This decrease was greater in C57BL/6J mice, indicating a genetic influence. Moreover, endosteal remodeling became unbalanced because of increased osteoclast and decreased osteoblast numbers. The porosity of the femoral cortex increased with age but was much higher in females of both strains. Notably, the increased cortical porosity resulted from de novo intracortical remodeling by osteon-like structures. Age-dependent cortical bone loss was associated with increased osteocyte DNA damage, cellular senescence, the senescence-associated secretory phenotype, and increased levels of RANKL. The demonstration of unbalanced endosteal and intracortical remodeling in old mice validates the relevance of this animal model to involutional osteoporosis in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。