Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer

组蛋白去甲基化酶KDM5B的磷酸化与三阴性乳腺癌表型的调控

阅读:9
作者:I-Ju Yeh, Emily Esakov, Justin D Lathia, Masaru Miyagi, Ofer Reizes, Monica M Montano

Abstract

Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers. However, the mechanisms by which KDM5B is regulated in breast cancer, in particular in response to post-translational signals is not well-defined. Here, we demonstrate that KDM5B is phosphorylated at Ser1456 by the cyclin-dependent kinase 1 (CDK1). Phosphorylation of KDM5B at Ser1456 attenuated the occupancy of KDM5B on the promoters of pluripotency genes. Moreover, KDM5B inhibited the expression of pluripotency genes, SOX2 and NANOG, and decreased the stem cell population in triple-negative breast cancer cell lines (TNBC). We previously reported that the tumor suppressor HEXIM1 is a mediator of KDM5B recruitment to its target genes, and HEXIM1 is required for the inhibition of nuclear hormone receptor activity by KDM5B. Similarly, HEXIM1 is required for regulation of pluripotency genes by KDM5B.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。