Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels

小电导 Ca2+ 激活 K+ 通道中存在深孔激活门的证据

阅读:4
作者:Andrew Bruening-Wright, Wei-Sheng Lee, John P Adelman, James Maylie

Abstract

Small conductance calcium-gated potassium (SK) channels share an overall topology with voltage-gated potassium (K(v)) channels, but are distinct in that they are gated solely by calcium (Ca(2+)), not voltage. For K(v) channels there is strong evidence for an activation gate at the intracellular end of the pore, which was not revealed by substituted cysteine accessibility of the homologous region in SK2 channels. In this study, the divalent ions cadmium (Cd(2+)) and barium (Ba(2+)), and 2-aminoethyl methanethiosulfonate (MTSEA) were used to probe three sites in the SK2 channel pore, each intracellular to (on the selectivity filter side of) the region that forms the intracellular activation gate of voltage-gated ion channels. We report that Cd(2+) applied to the intracellular side of the membrane can modify a cysteine introduced to a site (V391C) just intracellular to the putative activation gate whether channels are open or closed. Similarly, MTSEA applied to the intracellular side of the membrane can access a cysteine residue (A384C) that, based on homology to potassium (K) channel crystal structures (i.e., the KcsA/MthK model), resides one amino acid intracellular to the glycine gating hinge. Cd(2+) and MTSEA modify with similar rates whether the channels are open or closed. In contrast, Ba(2+) applied to the intracellular side of the membrane, which is believed to block at the intracellular end of the selectivity filter, blocks open but not closed channels when applied to the cytoplasmic face of rSK2 channels. Moreover, Ba(2+) is trapped in SK2 channels when applied to open channels that are subsequently closed. Ba(2+) pre-block slows MTSEA modification of A384C in open but not in closed (Ba(2+)-trapped) channels. The findings suggest that the SK channel activation gate resides deep in the vestibule of the channel, perhaps in the selectivity filter itself.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。