Fam163a knockdown and mitochondrial stress in the arcuate nucleus of hypothalamus reduce AgRP neuron activity and differentially regulate mitochondrial dynamics in mice

下丘脑弓状核中的 Fam163a 敲低和线粒体应激可降低 AgRP 神经元活性并以差异方式调节小鼠的线粒体动力学

阅读:13
作者:Cihan Suleyman Erdogan, Yavuz Yavuz, Huseyin Bugra Ozgun, Volkan Adem Bilgin, Sami Agus, Ugur Faruk Kalkan, Bayram Yilmaz

Aim

Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus.

Conclusion

Hypothalamic FAM163A may play a role in modulating AgRP neuronal activity through regulating mitochondrial biogenesis, dynamics, and redox state. These findings provide insights into the role of FAM163A and mitochondrial stress in the central regulation of metabolism.

Methods

Male C57BL/6 and AgRP-Cre mice received intracranial injections of either Fam163a shRNA, rotenone, or appropriate controls. Behavioral assessments included food intake, locomotor activity, and anxiety-like behaviors. qRT-PCR was used to quantify the expression of the genes related to food intake, mitochondrial biogenesis, dynamics, and oxidative stress. Blood glucose, serum insulin, and leptin levels were measured. Electrophysiological patch-clamp recordings were used to assess the AgRP neuronal activity.

Results

Fam163a knockdown in the ARC increased the cumulative food intake in short term (first 7 days) without altering the 25-day food intake and significantly increased the Pomc mRNA expression. Fam163a silencing significantly reduced leptin levels. Both Fam163a knockdown and rotenone significantly reduced the firing frequency of AgRP neurons. Neither Fam163a silencing nor rotenone altered locomotor or anxiety-like behaviors. Fam163a knockdown and rotenone differentially altered the expression of mitochondrial biogenesis-, mitophagy-, fusion-, and oxidative stress-related genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。