Identification of Nicotinic Acetylcholine Receptor for N-Acetylcysteine to Rescue Nicotine-induced Injury Using Beating Cilia in Primary Tissue Derived Airway Organoids

鉴定 N-乙酰半胱氨酸的烟碱乙酰胆碱受体,以利用原发组织来源的气道类器官中的纤毛跳动来挽救尼古丁引起的损伤

阅读:8
作者:Yichao Zheng, Qinyong Tian, Haowei Yang, Yongde Cai, Jiaxin Zhang, Yifen Wu, Shuo Zhu, Zuocheng Qiu, Yimin Lin, Jiangquan Hong, Yi Zhang, David Dockrell, Shaohua Ma

Abstract

Smoking is one of the major contributors to airway injuries. N-acetylcysteine (NAC) has been proposed as a treatment or preventive measure for such injuries. However, the exact nature of the smoking-induced injury and the protective mechanism of NAC are not yet fully understood. Here, patient tissue-derived airway organoids for modeling smoking-induced injury, therapeutic investigation, and mechanism studies are developed. Airway organoids consist mainly of ciliated cells, together with basal cells, goblet cells, and myofibroblast-like cells. The organoids display apical-out and basal-in polarity and are enriched in beating cilia, which are sensitive to smoking challenge and NAC treatment. An algorithm is developed to measure ciliary beating activity by analyzing the altered beating pattern of cilia in response to nicotine challenge and NAC treatment. Nicotinic acetylcholine receptors (nAChRs) expressed by airway organoids are involved in the mechanisms of nicotine-induced injury through the nicotine-nAChR pathway. In contrast to the common understanding that NAC has an antioxidative effect that mitigates airway damage, it is elucidated that NAC binding to nicotine can abolish the binding capacity of nicotine to nAChRs and thus prevent nicotine-induced injury. This study focuses on the advances and potential of humanized organoids in understanding biological processes, mechanisms, and identifying therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。