Development of an Optical Sensor Using a Molecularly Imprinted Polymer as a Selective Extracting Agent for the Direct Quantification of Tartrazine in Real Water Samples

开发一种使用分子印迹聚合物作为选择性萃取剂的光学传感器,用于直接定量实际水样中的酒石黄

阅读:5
作者:Gerson A Ruiz-Córdova, Jaime Vega-Chacón, Maria Del Pilar Taboada Sotomayor, Juan C Tuesta, Sabir Khan, Gino Picasso

Abstract

This study presents a new optical sensor for tartrazine (TAR) quantification developed using a molecularly imprinted polymer (MIP) as the recognition element, with optical fiber serving as the supporting substrate. The fiber surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS), and the fiber was coated with MIP using the precipitation polymerization method. The analysis of MIP immobilization on the functionalized optical fiber (FF) was conducted through the use of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Experimental parameters, such as contact time and fiber length, were adjusted in order to obtain the highest sensitive response signal for the functionalized optical fiber (FF-MIP). The fiber sensor, FF-MIP, exhibited a relatively higher response signal for tartrazine compared to other interfering dyes. The rapid and total desorption of the analyte from FF-MIP allowed the immediate reemployment of FF-MIP, which also presented an acceptable repeatability for the reflectance signal. The imprinting factors for the studied dyes were between 0.112 and 0.936 in front of TAR, 1.405, and selectivity factors were between 1.501 and 12.545, confirming the sensor selectivity. The FF-MIP sensor was successfully applied for tartrazine quantification in real water samples, where it yielded satisfactory results comparable to those of the HPLC reference method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。